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ANALYSIS OF AXISYMMETRIC PHASE STRAINS

IN PLATES AND SHELLS

UDC 539.370L. I. Shkutin

The axisymmetric strain problem for a shell in the direct phase transformation interval is formulated
approximately as a nonlinear boundary-value thermoelastic problem with an implicit temperature
dependence (through a phase parameter simulating the volume fraction of the new-phase crystals).
The buckling problems for a circular plate and a shallow spherical dome of TiNi alloy loaded by
normal pressure in the direct phase transformation interval are solved numerically. The branches of
buckled equilibrium states are obtained for various values of the loading and phase parameters. It is
found that the deflections increase abruptly with an increase in the phase parameter for a fixed value
of the loading parameter. The evolution of the buckling modes and the phase-strain distribution along
the meridian are studied.

Key words: shape-memory alloys, phase transformations, phase strains, plates, shells, buckling,
numerical analysis.

The unique properties of shape-memory alloys are due to its thermoelastic phase transformations [1]. Cooling
of a loaded specimen in the phase-transformation interval results in a phase strain whose deviator is proportional
to the internal-stress deviator at a constant temperature [2]. For the subsequent heating of the specimen through
the inverse-transformation interval, the phase strain acquired earlier is removed partly or completely (the shape-
memory effect). Metal alloys undergoing phase transformations under thermal cycling are used mainly in the design
of thermosensitive structural elements. The shape-memory effect is the most pronounced for thin-walled elements
made of these alloys.

Over the last years, certain progress has been made in constructing mathematical equations for modeling the
phase-transformation and shape-memory effects. In the present paper, the micromechanical constitutive relations
proposed and substantiated in [2, 3] are used. In [4], these equations were applied to the linear buckling problem
for a rectangular plate in the direct-transformation interval. An analysis of the nonlinear problems of plane phase
strains in rods and plates was performed in [5]. The solutions of the nonlinear axisymmetric problems given below
were obtained using the kinematic shell model with independent rotations of transverse fibers [6].

Mechanical Equations of Axisymmetric Strain of a Shell. We consider a shell with axisymmetric
base surface A. Let the material points of the deformable shell move relative to a cylindrical coordinate system
(r, t2, z) and let iJ be the orthonormal basis of this system. The local coordinate system tJ with the orthonormal
basis e0

J (t1, t2) is related to the base surface of the shell. The parameter t1 ∈ [0, 1] is reckoned along the meridian,
t2 ∈ [0, 2π] along the parallel, and t3 ∈ [−1, +1] along the normal direction to the surface. Here and below, the
upper-case Latin subscripts take the values 1, 2, and 3, the lower-case subscripts take the values 1 and 2, and
a comma before a subscript denotes the partial derivative with respect to the corresponding coordinate.

In the undeformed state, the meridian of the base surface is specified by the parametric equations

r = la2(t), z = la3(t) ∀ t ∈ [0, 1], (1)
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where l is the meridional length and a2 and a3 are known functions of the parameter t = t1. The orthonormal
bases iJ and e0

J can be related by the orthogonal transformation e0
J = iJ · O0 to the rotator tensor O0(t), whose

components are defined in both bases by the orthogonal matrix

O0
JK =

⎡
⎣

cos θ0 0 sin θ0

0 1 0
− sin θ0 0 cos θ0

⎤
⎦ , (2)

where θ0(t) is the angle of rotation of the basis e0
J about the vector e0

2 = i2. By the definition, the relations
a2,1 = cos θ0 and a3,1 = − sin θ0 are valid.

We study the axisymmetric strain of a dome for which its base surface remains axisymmetric and the equation
of its meridian is written similarly to (1) in parametric form

r = ly2(t), z = ly3(t) ∀ t ∈ [0, 1], (3)

where y2 and y3 are unknown functions of an arbitrary point t.
Using the orthogonal transformation eJ = iJ · O = e0

J · O0 · O with the rotator tensor O(t), we introduce a
local orthonormal basis eJ(t) which rotates during the deformation (O0 is the tensor conjugate with O0). In the
bases iJ and eJ , the components of the rotator O are defined by a matrix of the form (2):

OJK =

⎡
⎣

cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ . (4)

Here θ = θ0 + ϑ is the angle of rotation of the basis eJ about the vector i2 and ϑ(t) is the rotation increment due
to the strain. In the initial state, ϑ = 0 and the basis eJ coincides with e0

J . The local rotation represented by the
matrix (4) has only one degree of freedom — the angle of rotation θ or ϑ = θ − θ0.

To study the axisymmetric strains, we use the mechanical equations of the nonlinear shell model with
independent fields of finite displacements and rotations [6, 7]. The starting system of equations comprises the
kinematic relations

y′
2 = (1 + u11) cos θ + u13 sin θ, y′

3 = −(1 + u11) sin θ + u13 cos θ,

u22 = a−1
2 (y2 − a2), v11 = (θ − θ0)′, v22 = a−1

2 (sin θ − sin θ0)
(5)

and the dynamic (static) equations

(a2T1)′ − T22 + a2P1 = 0, (a2T3)′ + a2P3 = 0,

(a2M11)′ − M22 cos θ − a2T13 + a2Q2 = 0, (6)

T11 = T1 cos θ − T3 sin θ, T13 = T1 sin θ + T3 cos θ.

Here uiJ (t), vii(t), TiJ (t), and Mii(t) are the components of the metric and bending strains, forces, and moments,
respectively, in the rotated basis and T1(t), T3(t), P1(t), P3(t), and Q2(t) are the components of the forces, external
surface forces and moments in the cylindrical basis; the prime denotes differentiation with respect to t.

Micromechanical Constitutive Relations. The three-dimensional field of the axisymmetric strains of
the shell is defined by the vectors w1 = w11e1 + w13e3 and w2 = w22e2 and the stress field by the vectors
s1 = S11e1 + S13e3 and s2 = S22e2, where S11 and S22 are the tensile–compressive normal stresses and S13 is the
transverse shear stress.

To establish the strain–stress relation in the direct phase transformation interval, we use the “uncoupled” [4]
micromechanical constitutive relations

w11 = ϕ11 +
S11 − νS22

E
, w22 = ϕ22 +

S22 − νS11

E
, w13 = ϕ13 +

S13

G
,

dϕ11

dq
= κ0ϕ11 +

2S11 − S22

3σ0
,

dϕ22

dq
= κ0ϕ22 +

2S22 − S11

3σ0
,

dϕ13

dq
= κ0ϕ13 +

S13

σ0
, (7)

q = sin
(π

2
T+ − T

T+ − T−

)
, T− � T � T+, 0 � q � 1.

286



Here wiJ and ϕiJ are the total and phase strains, respectively, E and G are the tensile–compressive and shear
elastic moduli, respectively, ν is Poisson’s ratio, κ0 and σ0 are experimental constants of the alloy in the direct-
transformation interval, T+ and T− are the initial and final temperatures of the direct transformation, respectively,
T is the current temperature, and q is the internal parameter of state treated as the volume fraction of the martensite
phase. In the relations given above, the thermal strain of the alloy and the volume effect of the phase transformation
are ignored; therefore, ϕiJ are the components of the phase-strain deviator. In addition, we assume that the phase
transformation is a thermal process with a uniform temperature distribution over the volume of the specimen, which
implies that the parameter q does not depend on the coordinates.

From (7) it follows that the phase strains are determined by differential (with respect to the parameter q)
equations. The first terms on the right sides are responsible for the martensite crystal growth, and the second terms
for the nucleation and orientation of the crystals in the direction of the acting stresses. The elastic moduli of the
alloy appearing in (7) do not remain constant in the phase-transformation interval and vary from their austenite
values to martensite values. Bearing in mind the meaning of the parameter q, we represent these moduli in the
phase-transformation interval in the form of the Voigt-averaged relations

E = qE− + (1 − q)E+, ν = qν− + (1 − q)ν+, G = E/(2 + 2ν),

where the subscripts minus and plus correspond to the martensite and austenite phases, respectively.
Assuming that the stresses depend on the parameter q more weakly than the phase strains, we obtain the

approximate solution of the differential equations (7):

ϕ11 � η
2S11 − S22

3σ0κ0
, ϕ22 � η

2S22 − S11

3σ0κ0
, ϕ13 � η

S13

σ0κ0
, η(q) = exp (κ0q) − 1. (8)

This solution satisfies the physical conditions: the phase strains vanish in the austenite (for q = 0) and reach
maximum values in the martensite (for q = 1).

Substituting functions (8) into the first three equations of system (7), we obtain the approximate constitutive
relations

E0w11 � η1S11 − η2S22, E0w22 � η1S22 − η2S11, E0w13 � η3S13,

η1(q) ≡ E0

E
+ η

2E0

3σ0κ0
, η2(q) ≡ ν

E0

E
+ η

E0

3σ0κ0
, η3(q) ≡ E0

G
+ η

E0

σ0κ0
.

(9)

Here E0 is a constant with the dimension of stress, which can conveniently be identified with one of the constants
E− or E+.

Equations (9) describe the phase transformation as the thermoelastic strain with an implicit temperature
dependence (through the parameter q).

In accordance with the shell model adopted, we have

w11 � u11 + hl−1t3v11, w22 � u22 + hl−1t3v22, w13 � u13 ∀ t3 ∈ [−1, +1]

(2h is the shell thickness). Substituting these values into (9) and integrating over the thickness, we obtain the
resulting (moment) constitutive relations

C0u11 � η1T11 − η2T22, C0u22 � η1T22 − η2T11, C0u13 � η3T13,

l−1H0v11 � η1M11 − η2M22, l−1H0v22 � η1M22 − η2M11,
(10)

where C0 = 2hE0 and H0 = 2h3E0/3 are the stiffness parameters. To formulate the complete system of equations,
it is convenient to write relations (10) as

u11 � (1 − γ2)η1T11C
−1
0 − γu22, u13 � η3T13C

−1
0 ,

v11 � (1 − γ2)η1M11lH
−1
0 − γv22, (11)

T22 � γT11 + C0η
−1
1 u11, M22 � γM11 + H0l

−1η−1
1 v11, γ = η2η

−1
1 .

Dimensionless Formulation of the Closed System of Equations. Equations (5), (6), and (11) con-
stitute a closed system of ordinary nonlinear equations, whose solution depends on the parameter q. This system
can be written in dimensionless form
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y′
0 = a−1

2 [(1 − γ2)η1y1 − γ(sin y0 − sin θ0)] + θ′0,

y′
1 = a−1

2 [γy1 + η−1
1 (sin y0 − sin θ0)] cos y0 + ε−1f3 − a2q2,

y′
2 = a−1

2 εη3f3 sin y0 + (1 + εf1) cos y0,

y′
3 = a−1

2 εη3f3 cos y0 − (1 + εf1) sin y0, (12)

y′
4 = a−1

2 [γf2 + ε−1η−1
1 (y2 − a2)] − a2p1, y′

5 = −a2p3,

f1 ≡ a−1
2 [(1 − γ2)η1f2 − ε−1γ(y2 − a2)],

f2 ≡ y4 cos y0 − y5 sin y0, f3 ≡ y4 sin y0 + y5 cos y0

for the unknown functions

y0 = θ, y1 =
a2M11l

H0
, y2 =

r

l
, y3 =

z

l
, y4 =

a2T1

εC0
, y5 =

a2T3

εC0
.

System (12) includes the parameters of state of the alloy η1, η2, η3, and γ = η2/η1, the external loading parameters
p1 = P1l/(εC0), p3 = P3l/(εC0), and q2 = Q2l

2/H0, and the geometrical shell parameter ε2 = h2/(3l2).
System (12) should be subject to boundary conditions formulated for particular problems. In the numerical

solution of the system, its solutions are sought for discrete values of the parameter q in the interval 0 � q � 1. The
last equality in (7) relates the parameter q to the alloy temperature.

The solutions of the boundary-value problems given below were obtained for rods and plates made of NiTi
(titanium nickelide) alloy with the following experimental parameter values of thermoelastic martensite transfor-
mation [3]: T− = 25◦C, T+ = 50◦C, E− = 28 GPa, E+ = 84 GPa, E0 = E+, σ0 = 0.049E+, κ0 = 0.718, ν− = 0.48,
and ν+ = 0.33.

Buckling of a Plate under Uniform Pressure. We consider a simply supported circular plate loaded
by a uniform normal pressure of intensity P in the austenite phase. The initial shape of the base surface (1) is
specified by the parameters θ0 = 0, z = 0, and r = lt, where l is the radius of the supporting contour.

We study the axisymmetric strain of the plate (3) in the phase-transformation interval. In system (12), the
surface-load components are specified by the functions p1 = p sin y0, p3 = p cos y0, and q2 = 0, where p = Pl/(εC0) is
a numerical pressure parameter. On the supporting contour, the boundary conditions are given by

y1(1) = 0, y2(1) = 1, y3(1) = 0. (13)

At the plate pole, the following boundary conditions formulated in terms of the primary unknown functions [7, 8]
should be satisfied:

T13(0) = 0, T11(0) − T22(0) = 0, M11(0) − M22(0) = 0, (14)

The numerical solution of the nonlinear boundary-value problem (12)–(14) obtained by the shooting method
using the Mathcad software [7] is shown in Fig. 1 (w is the percent ratio of the maximum deflection to the radius).
The points correspond to the evolution of the state parameter w in the phase-transformation interval for a fixed
value of the pressure parameter and increasing value of q: in the austenite phase, the plate was loaded by a pressure
p = 0.01 and then left to cool through the phase-transformation interval.

Figure 2 shows buckling modes (shapes of the meridian) of the plate for various values of the parameter q.
Figure 3 shows the phase-strain evolution on the upper (free) surface of the plate for various values of the parameter q.
One can see that the radial and circumferential strains reach maximum values at the pole and do not exceed 2%.

More detailed data on the phase-strain evolution of the plate are given in Table 1 for p = 0.01. The boundary
values of the deflection w, rotation ϑ, strains wi = wii and w3 = wi3, internal force parameters τi = 100Tii/(εC0),
internal moments μi = 100Miil/H0, and stresses si = 100Sii/(εE0) and s3 = 100Si3/(εE0) are given for some
values of the parameter q. The tangential components of the strain and stress tensors reach maximum values at
the plate pole, and transverse components (which are an order of magnitude smaller) reach maximum values on the
supporting contour. One can see from Table 1 that with variation of the parameter q, the phase strains vary much
faster than the stresses. This finding is consistent with the initial assumption of a weak dependence of the stress
on the parameter q.
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Fig. 1. Numerical solution of the deformation problem for a circular plate loaded by uniform pressure
for ε = 0.025: the solid curve refers to the equilibrium states in the austenite phase with variation
of the parameter p; the points show the evolution of the state parameter w for p = 0.01.
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Fig. 2. Buckling modes of the circular plate for p = 0.01 and q = 0 (1), 0.1 (2), 0.25 (3), 0.5 (4),
0.75 (5), and 1 (6).

Fig. 3. Evolution of the phase strains on the upper surface of the circular plate for p = 0.01 and
q = 0 (1), 0.5 (2), and 1 (3): the solid curves refer to circumferential strains and the dashed curves
refer to radial strains.

Buckling of a Spherical Dome under Uniform Pressure. The initial shape of the meridian of the
dome (1) is defined by the parameters

θ0 = αt, a2 = α−1 sin θ0, a3 = α−1(cos θ0 − cosα),

where α is the slope of the meridian at the supporting point. The simply supported conditions of the dome are
formulated by equalities of the form (13), where y2(1) = α−1 sin α. Conditions (14) remain unaltered. Figure 4
shows the numerical solution of this problem for ε = 0.025 (w is the maximum deflection normalized by the initial
height of the dome).

Buckling modes of the dome for p = 0.002 and various values of the parameter q are shown in Fig. 5. The z

coordinate is normalized by the height a and the r coordinate by the radius b of the supporting contour. Curve 1
(q = 0.1) is very close to the initial shape of the meridian and curve 4 (q = 1) refers to the everted state of the
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TABLE 1

q w, % ϑ(1) τi(0) μi(0) wi(0), % w3(1), % si(0) s3(1)

0 2.03 0.0305 1.55 7.48 0.2428 0.0311 14.500 0.4677
0.10 3.61 0.0538 2.22 6.32 0.4633 0.0518 13.170 0.4144
0.25 5.28 0.0794 2.51 4.89 0.7197 0.0786 10.980 0.3543
0.50 7.28 0.1116 2.51 3.49 1.0667 0.1205 8.560 0.2924
0.75 8.91 0.1389 2.39 2.70 1.3890 0.1647 7.056 0.2529
1.00 10.40 0.1649 2.24 2.18 1.7313 0.2166 6.016 0.2237
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Fig. 4. Numerical solution of the deformation problem for a spherical dome loaded by uniform pressure
for ε = 0.025: the solid curve refers to equilibrium states in the austenite phase with variation of the
parameter p; the points show the evolution of the state parameter w for a fixed value of the parameter p
(the open points refer to p = 0.002 and the filled points refer to p = 0.01).

Fig. 5. Buckling modes of a spherical dome for p = 0.002 and q = 0.1 (1), 0.5 (2), 0.75 (3), and 1 (4).
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Fig. 6. Phase-strain evolution for the upper surface of the spherical
dome for p = 0.002 and q = 0.5 (1) and 1 (2): the solid curves refer to
circumferential strains and the dashed curves to meridional strains.
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TABLE 2

q w ϑ(1) τi(0) μi(0) wi(0), % w3(1), % si(0) s3(1)

0 0.0514 0.0034 0.7314 0.8090 0.0357 0.0037 2.133 0.0557
0.10 0.1156 0.0075 0.7227 0.8832 0.0792 0.0071 2.252 0.0565
0.25 0.2374 0.0152 0.7333 0.9860 0.1600 0.0132 2.441 0.0595
0.50 0.5814 0.0365 0.7570 1.2976 0.3744 0.0288 3.005 0.0700
0.75 1.3976 0.0869 0.5137 2.0046 0.7846 0.0649 3.986 0.0997
1.00 1.9554 0.1233 0.0781 1.8824 0.9609 0.1006 3.338 0.1039

dome. The dome is everted without snap-through buckling since w(q) is a monotonically increasing curve [like the
curve of w(p)].

Figure 6 shows the phase-strain evolution on the upper (stress-free) surface of the dome for various values of
the parameter q. The meridional and circumferential strains as functions of the coordinate t are shown by dashed
and solid curves, respectively. One can see that the maximum values of the meridional and circumferential strains
occur at the pole and do not exceed 1%.

More detailed data on the phase-strain evolution of the dome are listed in Table 2 for p = 0.002. The absolute
boundary values of the deflection w, rotation ϑ, strains wi, internal-force parameters τi, internal moments μi, and
stresses si are given for some values of q. As in the plate problem, the tangential components of the strain and
stress tensors reach maximum values at the pole and the transverse components (which are an order of magnitude
smaller) reach maximum values on the supporting contour; in this case, the phase strains are more sensitive to the
parameter q than the stresses.

Conclusions. The solutions given above should be regarded as approximate solutions in which interphase
stress rates are neglected compared to the phase-strain rates in the phase-transformation temperature interval. This
solution is supported by the presence of “yield plateaus” in the experimental curves of stresses versus phase strains.

The formulation of equations proposed here allows one to formulate and approximately solve strongly nonlin-
ear axisymmetric problems of phase strains in thin shells and plates under other loading and boundary conditions.
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